Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.866
Filtrar
1.
Nature ; 619(7971): 868-875, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438529

RESUMO

Enhancers determine spatiotemporal gene expression programs by engaging with long-range promoters1-4. However, it remains unknown how enhancers find their cognate promoters. We recently developed a RNA in situ conformation sequencing technology to identify enhancer-promoter connectivity using pairwise interacting enhancer RNAs and promoter-derived noncoding RNAs5,6. Here we apply this technology to generate high-confidence enhancer-promoter RNA interaction maps in six additional cell lines. Using these maps, we discover that 37.9% of the enhancer-promoter RNA interaction sites are overlapped with Alu sequences. These pairwise interacting Alu and non-Alu RNA sequences tend to be complementary and potentially form duplexes. Knockout of Alu elements compromises enhancer-promoter looping, whereas Alu insertion or CRISPR-dCasRx-mediated Alu tethering to unregulated promoter RNAs can create new loops to homologous enhancers. Mapping 535,404 noncoding risk variants back to the enhancer-promoter RNA interaction maps enabled us to construct variant-to-function maps for interpreting their molecular functions, including 15,318 deletions or insertions in 11,677 Alu elements that affect 6,497 protein-coding genes. We further demonstrate that polymorphic Alu insertion at the PTK2 enhancer can promote tumorigenesis. Our study uncovers a principle for determining enhancer-promoter pairing specificity and provides a framework to link noncoding risk variants to their molecular functions.


Assuntos
Elementos Alu , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA , Elementos Alu/genética , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Quinase 1 de Adesão Focal/genética , Regulação da Expressão Gênica , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes , Regiões Promotoras Genéticas/genética , RNA/química , RNA/genética , RNA/metabolismo , Deleção de Sequência
2.
Biosci Rep ; 43(2)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36601994

RESUMO

Central to the universal process of recombination, RecA family proteins form nucleoprotein filaments to catalyze production of heteroduplex DNA between substrate ssDNAs and template dsDNAs. ATP binding assists the filament in assuming the necessary conformation for forming heteroduplex DNA, but hydrolysis is not required. ATP hydrolysis has two identified roles which are not universally conserved: promotion of filament dissociation and enhancing flexibility of the filament. In this work, we examine ATP utilization of the RecA family recombinase SsoRadA from Saccharolobus solfataricus to determine its function in recombinase-mediated heteroduplex DNA formation. Wild-type SsoRadA protein and two ATPase mutant proteins were evaluated for the effects of three divalent metal cofactors. We found that unlike other archaeal RadA proteins, SsoRadA-mediated strand exchange is not enhanced by Ca2+. Instead, the S. solfataricus recombinase can utilize Mn2+ to stimulate strand invasion and reduce ADP-binding stability. Additionally, reduction of SsoRadA ATPase activity by Walker Box mutation or cofactor alteration resulted in a loss of large, complete strand exchange products. Depletion of ADP was found to improve initial strand invasion but also led to a similar loss of large strand exchange events. Our results indicate that overall, SsoRadA is distinct in its use of divalent cofactors but its activity with Mn2+ shows similarity to human RAD51 protein with Ca2+.


Assuntos
Cálcio , Sulfolobus solfataricus , Humanos , Cálcio/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Recombinases Rec A/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Recombinases/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo
3.
Biotechnol J ; 18(1): e2200323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36317440

RESUMO

Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing.


Assuntos
Proteínas de Escherichia coli , Ácidos Nucleicos Heteroduplexes , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , DNA/genética , DNA/metabolismo , Fenômenos Magnéticos
4.
Nature ; 613(7942): 187-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544021

RESUMO

R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.


Assuntos
Citoplasma , DNA , Reconhecimento da Imunidade Inata , Ácidos Nucleicos Heteroduplexes , Estruturas R-Loop , RNA , Humanos , Apoptose , Citoplasma/imunologia , Citoplasma/metabolismo , DNA/química , DNA/imunologia , DNA Helicases/genética , DNA Helicases/metabolismo , Genes BRCA1 , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Mutação , Neoplasias , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/imunologia , Estruturas R-Loop/imunologia , RNA/química , RNA/imunologia , RNA Helicases/genética , RNA Helicases/metabolismo , Ataxias Espinocerebelares/genética
5.
Cell Rep ; 37(10): 110088, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879271

RESUMO

Alternative lengthening of telomeres (ALT) is a telomere-elongation mechanism observed in ∼15% of cancer subtypes. Current models indicate that ALT is mediated by homology-directed repair mechanisms. By disrupting MSH6 gene expression, we show that the deficiency of MutSα (MSH2/MSH6) DNA mismatch repair complex causes striking telomere hyperextension. Mechanistically, we show MutSα is specifically recruited to telomeres in ALT cells by associating with the proliferating-cell nuclear antigen (PCNA) subunit of the ALT telomere replisome. We also provide evidence that MutSα counteracts Bloom (BLM) helicase, which adopts a crucial role in stabilizing hyper-extended telomeres and maintaining the survival of MutSα-deficient ALT cancer cells. Lastly, we propose a model in which MutSα deficiency impairs heteroduplex rejection, leading to premature initiation of telomere DNA synthesis that coincides with an accumulation of telomere variant repeats (TVRs). These findings provide evidence that the MutSα DNA mismatch repair complex acts to restrain unwarranted ALT.


Assuntos
DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/enzimologia , Ácidos Nucleicos Heteroduplexes/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Linhagem Celular Tumoral , Reparo de Erro de Pareamento de DNA , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HeLa , Humanos , Modelos Genéticos , Proteína 2 Homóloga a MutS/genética , Neoplasias/genética , Neoplasias/patologia , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/genética
6.
Cell Rep ; 37(10): 110097, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879269

RESUMO

RNA-DNA hybrids are often associated with genome instability and also function as a cellular regulator in many biological processes. In this study, we show that accumulated RNA-DNA hybrids cause multiple defects in budding yeast meiosis, including decreased sporulation efficiency and spore viability. Further analysis shows that these RNA-DNA hybrid foci colocalize with RPA/Rad51 foci on chromosomes. The efficient formation of RNA-DNA hybrid foci depends on Rad52 and ssDNA ends of meiotic DNA double-strand breaks (DSBs), and their number is correlated with DSB frequency. Interestingly, RNA-DNA hybrid foci and recombination foci show similar dynamics. The excessive accumulation of RNA-DNA hybrids around DSBs competes with Rad51/Dmc1, impairs homolog bias, and decreases crossover and noncrossover recombination. Furthermore, precocious removal of RNA-DNA hybrids by RNase H1 overexpression also impairs meiotic recombination similarly. Taken together, our results demonstrate that RNA-DNA hybrids form at ssDNA ends of DSBs to actively regulate meiotic recombination.


Assuntos
DNA Fúngico/metabolismo , Recombinação Homóloga , Meiose , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , RNA Fúngico/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 12(1): 7344, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937876

RESUMO

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Assuntos
Linfócitos/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Administração Intravenosa , Transferência Adotiva , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Endocitose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Humanos , Integrina alfa4/genética , Integrina alfa4/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Ácidos Nucleicos Heteroduplexes/administração & dosagem , Ácidos Nucleicos Heteroduplexes/farmacocinética , Ácidos Nucleicos Heteroduplexes/farmacologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/patologia , Distribuição Tecidual/efeitos dos fármacos
8.
EMBO J ; 40(22): e103787, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34585421

RESUMO

Repair of DNA double-stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post-translational modification of repair factors. In budding yeast, single-stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA-RPA complexes are then SUMO-modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3' single-stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO-RPA signal is amplified by successive rounds of Siz2-dependent SUMO modification of RPA and dissociation of SUMO-RPA at the junction between single- and double-stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.


Assuntos
Ácidos Nucleicos Heteroduplexes/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Mutação , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Domínios Proteicos , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/química
9.
Nanomedicine ; 37: 102442, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34284132

RESUMO

Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.


Assuntos
Hidrogéis/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/genética , Células Apresentadoras de Antígenos/efeitos dos fármacos , DNA/química , DNA/farmacologia , Humanos , Hidrogéis/química , Ativação Linfocitária/genética , Linfócitos/metabolismo , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/farmacologia , RNA/química , RNA/genética , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
10.
Nat Methods ; 18(7): 816-820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127856

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) has become a versatile and widespread method to probe nanoscale conformation and dynamics. However, current experimental modalities often resort to molecule immobilization for long observation times and do not always approach the resolution limit of FRET-based nanoscale metrology. Here we present ABEL-FRET, an immobilization-free platform for smFRET measurements with ultrahigh resolving power in FRET efficiency. Importantly, single-molecule diffusivity is used to provide additional size and shape information for hydrodynamic profiling of individual molecules, which, together with the concurrently measured intramolecular conformation through FRET, enables a holistic and dynamic view of biomolecules and their complexes.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Dano ao DNA , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Transferência Ressonante de Energia de Fluorescência/instrumentação , Hidrodinâmica , Dispositivos Lab-On-A-Chip , Conformação Molecular , Ácidos Nucleicos Heteroduplexes/química , Fótons , Imagem Individual de Molécula/instrumentação
11.
Nucleic Acids Res ; 49(11): 6114-6127, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34125895

RESUMO

Dynamic DNA nanodevices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation remains challenging due to nuclease degradation and other cellular factors. Use of l-DNA, the nuclease resistant enantiomer of native d-DNA, provides a promising solution. On this basis, we recently developed a strand displacement methodology, referred to as 'heterochiral' strand displacement, that enables robust l-DNA nanodevices to be sequence-specifically interfaced with endogenous d-nucleic acids. However, the underlying reaction - strand displacement from PNA-DNA heteroduplexes - remains poorly characterized, limiting design capabilities. Herein, we characterize the kinetics of strand displacement from PNA-DNA heteroduplexes and show that reaction rates can be predictably tuned based on several common design parameters, including toehold length and mismatches. Moreover, we investigate the impact of nucleic acid stereochemistry on reaction kinetics and thermodynamics, revealing important insights into the biophysical mechanisms of heterochiral strand displacement. Importantly, we show that strand displacement from PNA-DNA heteroduplexes is compatible with RNA inputs, the most common nucleic acid target for intracellular applications. Overall, this work greatly improves the understanding of heterochiral strand displacement reactions and will be useful in the rational design and optimization of l-DNA nanodevices that operate at the interface with biology.


Assuntos
DNA/química , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Peptídicos/química , Cinética , RNA/química , Estereoisomerismo , Termodinâmica
12.
Nucleic Acids Res ; 49(12): 6638-6659, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978760

RESUMO

G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.


Assuntos
Quadruplex G , Oligonucleotídeos/química , Genoma Humano , Humanos , Ligantes , Ácidos Nucleicos Heteroduplexes , Ácidos Nucleicos Peptídicos , Transcriptoma
13.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830170

RESUMO

The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises predominantly from ribosomal RNA, not RNA:DNA hybrids. S9.6 staining was unchanged by pretreatment with the RNA:DNA hybrid-specific nuclease RNase H1, despite verification in situ that S9.6 recognized RNA:DNA hybrids and that RNase H1 was active. S9.6 staining was, however, significantly sensitive to RNase T1, which specifically degrades RNA. Additional imaging and biochemical data indicate that the prominent cytoplasmic and nucleolar S9.6 signal primarily derives from ribosomal RNA. Importantly, genome-wide maps obtained by DNA sequencing after S9.6-mediated DNA:RNA immunoprecipitation (DRIP) are RNase H1 sensitive and RNase T1 insensitive. Altogether, these data demonstrate that imaging using S9.6 is subject to pervasive artifacts without pretreatments and controls that mitigate its promiscuous recognition of cellular RNAs.


Assuntos
Anticorpos Monoclonais/metabolismo , DNA/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/metabolismo , Ribonuclease H/metabolismo , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Artefatos , DNA/química , Humanos , Ácidos Nucleicos Heteroduplexes/química , RNA/química , Ribonuclease H/química
14.
J Microbiol ; 59(4): 401-409, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33779953

RESUMO

Eukaryotic genomes contain many duplicated genes closely located with each other, such as the hexose transporter (HXT) genes in Saccharomyces cerevisiae. They can potentially recombine via single-strand annealing (SSA) pathway. SSA between highly divergent sequences generates heteroduplex DNA intermediates with many mismatches, which can be corrected by mismatch repair (MMR), resulting in recombinant sequences with a single junction point. In this report, we demonstrate that SSA between HXT1 and HXT4 genes in MMR-deficient yeast cells produces recombinant genes with multiple-junctions resulting from alternating HXT1 and HXT4 tracts. The mutations in MMR genes had differential effects on SSA frequencies; msh6Δ mutation significantly stimulated SSA events, whereas msh2Δ and msh3Δ slightly suppressed it. We set up an assay that can identify a pair of recombinant genes derived from a single heteroduplex DNA. As a result, the recombinant genes with multiple-junctions were found to accompany genes with single-junctions. Based on the results presented here, a model was proposed to generate multiple-junctions in SSA pathway involving an alternative short-patch repair system.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Transporte de Monossacarídeos/genética , Ácidos Nucleicos Heteroduplexes/genética , Saccharomyces cerevisiae/genética , Pareamento Incorreto de Bases , DNA Fúngico , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Mutação , Recombinação Genética
15.
Nucleic Acids Res ; 49(7): 4120-4128, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764415

RESUMO

Cas12f, also known as Cas14, is an exceptionally small type V-F CRISPR-Cas nuclease that is roughly half the size of comparable nucleases of this type. To reveal the mechanisms underlying substrate recognition and cleavage, we determined the cryo-EM structures of the Cas12f-sgRNA-target DNA and Cas12f-sgRNA complexes at 3.1 and 3.9 Å, respectively. An asymmetric Cas12f dimer is bound to one sgRNA for recognition and cleavage of dsDNA substrate with a T-rich PAM sequence. Despite its dimerization, Cas12f adopts a conserved activation mechanism among the type V nucleases which requires coordinated conformational changes induced by the formation of the crRNA-target DNA heteroduplex, including the close-to-open transition in the lid motif of the RuvC domain. Only one RuvC domain in the Cas12f dimer is activated by substrate recognition, and the substrate bound to the activated RuvC domain is captured in the structure. Structure-assisted truncated sgRNA, which is less than half the length of the original sgRNA, is still active for target DNA cleavage. Our results expand our understanding of the diverse type V CRISPR-Cas nucleases and facilitate potential genome editing applications using the miniature Cas12f.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR , Endodesoxirribonucleases/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Clivagem do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/farmacocinética , Edição de Genes , Modelos Moleculares , Ligação Proteica
16.
Yi Chuan ; 43(2): 182-193, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724220

RESUMO

Homologous recombination is an important source of biological genetic variation. Limited by detection methods, there are only a few reports on the homologous recombination in high plants and its product - heteroduplex DNA (hDNA). In the present study, applying the strategy of detecting hDNA by constructing populations from inhibited post-meiotic segregation, two hybrid triploid populations were constructed from two maternal parents inPopulus tomentosa by inhibiting post-meiotic segregation. One hundred and ten simple sequence repeat (SSR) markers were used to study the occurrence and variation of hDNA on nine chromosomes inP. tomentosa with different genotypes. The results showed that the frequencies of hDNA between two female parents inP. tomentosa ranged from 8.5% to 87.2%. The hDNA frequency was positively correlated to the distance from the centromere, but the average hDNA frequency on a chromosome had no correlation with the chromosome length. One to 3 times recombination events were detected on most chromosomes, and only a few four- or five-times recombination events were detected. The overall frequencies of hDNA on the same chromosome in two genotypic individuals were roughly similar, while the hDNA frequencies varied greatly at specific SSR loci. Compared withTacamahaca poplar hybrid,P. pseudo-simonii × P. nigra 'Zheyin3#', detection of homologous recombination times and the frequency and location of hDNA were largely different. This study is the first to describe the characteristics and variations of homologous recombination inP. tomentosa with two different genotypes, which will provide valuable insights for exploring the characteristics and variations of homologous recombination among interspecies and intraspecies in higher plant.


Assuntos
Populus , Feminino , Genótipo , Recombinação Homóloga , Humanos , Repetições de Microssatélites/genética , Ácidos Nucleicos Heteroduplexes , Populus/genética
17.
EMBO J ; 40(7): e106018, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33634895

RESUMO

The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.


Assuntos
Proteína BRCA2/metabolismo , RNA Helicases DEAD-box/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA2/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Humanos , Ácidos Nucleicos Heteroduplexes , Ligação Proteica
18.
J Vis Exp ; (167)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33554969

RESUMO

The three-stranded nucleic acid structure, R-loop, is increasingly recognized for its role in gene regulation. Initially, R-loops were thought to be the by-products of transcription; but recent findings of fewer R-loops in diseased cells made it clear that R-loops have functional roles in a variety of human cells. Next, it is critical to understand the roles of R-loops and how cells balance their abundance. A challenge in the field is the quantitation of R-loops since much of the work relies on the S9.6 monoclonal antibody whose specificity for RNA-DNA hybrids has been questioned. Here, we use dot-blots with the S9.6 antibody to quantify R-loops and show the sensitivity and specificity of this assay with RNase H, RNase T1, and RNase III that cleave RNA-DNA hybrids, single-stranded RNA, and double-stranded RNA, respectively. This method is highly reproducible, uses general laboratory equipment and reagents, and provides results within two days. This assay can be used in research and clinical settings to quantify R-loops and assess the effect of mutations in genes such as senataxin on R-loop abundance.


Assuntos
Immunoblotting , Estruturas R-Loop , Anticorpos/metabolismo , DNA/isolamento & purificação , Fibroblastos/metabolismo , Humanos , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos/metabolismo , Estruturas R-Loop/genética , RNA/genética , Ribonuclease H/metabolismo , Ribonucleases/metabolismo
19.
Methods Mol Biol ; 2153: 535-554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840803

RESUMO

DNA double-strand breaks (DSBs) are genotoxic lesions that can be repaired in a templated fashion by homologous recombination (HR). HR is a complex pathway that involves the formation of DNA joint molecules (JMs) containing heteroduplex DNA. Various types of JMs are formed throughout the pathway, including displacement loops (D-loops), multi-invasions (MI), and double Holliday junction intermediates. Dysregulation of JM metabolism in various mutant contexts revealed the propensity of HR to generate repeat-mediated chromosomal rearrangements. Specifically, we recently identified MI-induced rearrangements (MIR), a tripartite recombination mechanism initiated by one end of a DSB that exploits repeated regions to generate rearrangements between intact chromosomal regions. MIR occurs upon MI-JM processing by endonucleases and is suppressed by JM disruption activities. Here, we detail two assays: a physical assay for JM detection in Saccharomyces cerevisiae cells and genetic assays to determine the frequency of MIR in various chromosomal contexts. These assays enable studying the regulation of the HR pathway and the consequences of their defects for genomic instability by MIR.


Assuntos
DNA Fúngico/genética , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , DNA Fúngico/química , Proteínas de Escherichia coli/metabolismo , Mutação , Ácidos Nucleicos Heteroduplexes , Saccharomyces cerevisiae/metabolismo
20.
Nature ; 587(7833): 291-296, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087930

RESUMO

Transcription factors recognize specific genomic sequences to regulate complex gene-expression programs. Although it is well-established that transcription factors bind to specific DNA sequences using a combination of base readout and shape recognition, some fundamental aspects of protein-DNA binding remain poorly understood1,2. Many DNA-binding proteins induce changes in the structure of the DNA outside the intrinsic B-DNA envelope. However, how the energetic cost that is associated with distorting the DNA contributes to recognition has proven difficult to study, because the distorted DNA exists in low abundance in the unbound ensemble3-9. Here we use a high-throughput assay that we term SaMBA (saturation mismatch-binding assay) to investigate the role of DNA conformational penalties in transcription factor-DNA recognition. In SaMBA, mismatched base pairs are introduced to pre-induce structural distortions in the DNA that are much larger than those induced by changes in the Watson-Crick sequence. Notably, approximately 10% of mismatches increased transcription factor binding, and for each of the 22 transcription factors that were examined, at least one mismatch was found that increased the binding affinity. Mismatches also converted non-specific sites into high-affinity sites, and high-affinity sites into 'super sites' that exhibit stronger affinity than any known canonical binding site. Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding-thus prepaying some of the energetic cost incurred from deforming the DNA. Our work indicates that conformational penalties are a major determinant of protein-DNA recognition, and reveals mechanisms by which mismatches can recruit transcription factors and thus modulate replication and repair activities in the cell10,11.


Assuntos
Proteínas de Ligação a DNA/química , Conformação Molecular , Ácidos Nucleicos Heteroduplexes/química , Proteínas de Arabidopsis/química , Pareamento de Bases , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Termodinâmica , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...